
k R-ft" 645 SELECTING THE BEST UNKNOWN NERN FRON WORMA POPULIATIONS V-
I HAVING A COMMON U.. - U) PUltDUE UNIV LAFAYETTE IN DEPT OF

STATISTICS S S GUPTA ET AL. NMY 66 Ti-96-IS
UNCLSSIFIED NUSW4-64-C-0167 F/ 12/1 AL

mhEE~hhhE



12.2

11111~ 2..0g~ i

M.E0

A %~



711

(0 L

1*

70'

.4.4.

41,.

PURDUE UNIVERSITY

Aw

JN t IW6

DEPARTMENT OF STATISTICSA

IV 
-aofv

a.' MII. ILL uuP r public r l0,c,6o iJ :iea



Selecting the Best Unknown Mean from Normal Populations
Having A Common Unknown Coefficient of Variation*

by

Shanti S. Gupta
Purdue University

TaChen Liang
Southern Illinois University

Technical Report#86-16

S

Department of Statistics

Purdue Univ u-sity

May 1986

* This research was supported by the Office of Naval Research Contract N00014-84-C-
0167 at Purdue University. Reproduction in whole or in part is permitted for any purpose
of the United States Government.

.5.. 5.*"- .- ... .. . ...... . .. 5 5 . .0

5- . - . - - - - • 5 .,



TV 20 .-. .

SELECTING THE BEST UNKNOWN MEAN FROM NORMAL POPULATIONS
HAVING A COMMON UNKNOWN COEFFICIENT OF VARIATION*

Shanti S. Gupta
Purdue University

West Lafayette, Indiana, USA

TaChen Liang
Southern Illinois University
Carbondale, Illinois, USA

Abstract

This paper deals with the problem of select-
ing the population associated with the larg-
est unknown mean from several normal popula-
tions having a common unknown coefficient of
variation. Both subset selection and
indifference zone approaches are studied.
Based on the observed sample means and
sample standard deviations, a subset selec- Accession For

tion rule is proposed. Some properties NTiS C1TA&I

related to this selection rule are discussed. D7I T,
For the indifference zone approach, a two- U!, -.
stage elimination type selection rule is j,_:_,_fcn, . .
considered. If the experimenter has some
prior knowledge about an upper bound on the 1 ....
unknown means, a modification is introduced DiLri t
to reduce the size of the selected subset at
the first stage and also to reduce the A.iij.h2lt, $0,s
sample size at the second stage. An L
example is provided which indicates that the ,
saving of total sample size is quite signi-
ficant if this prior knowledge is taken into
consideration in designing the selection
rule. It is shown how to implement the
above selection rules by using several
existing tables.

*This recearch was supported by the Office of Naval P"L CT E 1)

Research Contract N00014-84-C-0167 at Purdue University. , "
Reproduction in whole or in part is permitted for any
purpot,', of the United States Government.
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1. Introduction

The problem of selecting the population associated with
the largest unknown mean has been extensively studied
in the literature for normal populations. References
may be found in Gupta and Panchapakesan (1979). These
procedures are not applicable when the population
standard deviations are proportional to the population
means, a situation that is quite common in physical and
biological applications. In the literature, among
others, Gleser and Healy (1976) have discussed several
best asymptotically normal estimators of a normal mean
with a known coefficient of variation. In the area of
ranking and selection, Tamhane (1978) used estimators
developed by Gleser and Healy (1976) and proposed selec-
tion rules (through both subset selection and indiffer-
ence zone approach) for normal populations having a
common known coefficient of variation, and provided
tables for implementing the rules in the large sample
case. Gupta and Singh (1983) proposed a subset selec-
tion rule, based on sample variances, for selecting the
population associated with the largest mean. Their
selection rule is independent of the value of the common
coefficient of variation, and therefore, can be applied
to the situation when the value of common coefficient of
variation is unknown.

In this paper, the problem of selecting the population
with the largest mean from several normal populations
having a common unknown coefficient of variation is
studied. The statistical formulation of the problem is
given in Section 2. In Section 3, a subset selection
rule, based on the observed values of the sample means
and sample standard deviations, is proposed. Some
properties related to this selection rule are also

"*. discussed. In Section 4, a two-stage elimination type
* rule is given based on the indifference zone
* approach. If the experimenter has some prior knowledge
. about an upper bound on the unknown means, a modifica-

tion is introduced which reduces the sample size at the
second stage. To implement the above selection rules,
the related tables are available from Gupta (1963), and

' Gupta, Panchapakesan and Sohn (1985).

.. o
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2. Formulation of the Selection Problems

Let T1",...,k be k (> 2) normal populations with

positive means 0 ,... ek and a common unknown coeffi-

cient of variationb. Let e _... [k] be the

ordered values of the means. We shall assume that the
experimenter has no prior knowledge concerning the
correct pairing between and 0[j] (1 i, j k).

The population corresponding to 0 1k] will be referred

as the best population. In the .following, we will let
0 = (Ol... tok) be the parameter vector and 0 be the

parameter space.

Subset Selection Approach
9

According to this approach, the goal of the experi-

menter is to select a (small) subset of populations
which contains the best population. The selection of
any subset containing the best population is called a
correct selection (CS). The decision-maker restricts
attention only to those rules which guarantee the
probability requirement (the so-called P*-condition)
that

P0 {CS} > P* for all *3 E 9, (2.1)

where P*, k- 1 < P* < 1, is a preassigned constant.

Indifference Zone Approach

According to this approach, the goal of the experiment-
er is to select the best population. The selection of
the best population is called the correct selection
(CS). For this approach, in order to specify the
probability requirement, it is first necessary to
define a measure of distance between two populations.
We consider the following measure of distance:
Pi, , =c.-0o, the difference between the two popu-

liLion means of . and v . Note that this measure of1 j

~ -. !
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distance is different from that considered by Tamhane
(1978). For a preassigned value 6' > 0, let
P(6* I (Q E fik ( - [k-li + 6*). n(6*) is known as
the preference zone and its complement as indifference
zone. The assignment of 6* value will be based on the
experimenter's prior knowledge. The experimenter
restricts consideration only to those rules which
guarantee the probability requirement that

P {CS) > P* for all k E n(6"), (2.2)

where P*, k-1 < P* 1 1, is a preassigned constant.

3. Subset Selection Approach

The goal here is to select, on the basis of an indepen-
dent random sample Xi2 , j - 1,...,n, from each

(1 < i < k), a subset containing the best population
with the minimum probability P* of a correct
selection.

Subset Selection Rule R

For each i, let X n X. and -2 I n 2.
1 n -j=l ii i : X(X -

Based on (Xi,Si), 1 < i - k, we propose a subset selec-
tion rule R1 as follows:

Select ir. if Xi > Xj - /2 cS i for j#i. (3.1)

The constant c > 0 is determined by

P{Z- < cW for 1 < j c k-l} = P* (3.2)

where

7.'
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Z. * N(O,1), 1 _ j < k-i;

cov(Zi,Z.) = 1/2, for i # j*2 23.3)

(n-l)W2  X (n-1)•  and

(Zl*...'Zkl ) and W are independent.

The value of c satisfying (3.2) is available from Gupta
and Sobel (1957), and Gupta, Panchapakesan and Sohn
(1985).

Probability of a Correct Selection Associated with R

Let P (CSIR} be the probability of correct selection

when 9 is the true parameter vector and the selection
rule k is applied. Then, we have

Theorem 3.1. P {CSI R > P * for all 0 C n.

Proof: Without loss of generality, we can assume that
Ok = 0[k]. Following a straightforward computation,

P fC S I  1)

=P(X > Xj - 2/n cS for j # k) (3.4)Ok -k

= P{Y < -/nb- 1 aQ) + /2cB (e)W for 1 < j < k-l},

where

Yj 0 E k)b (0 2 N(0,1), l<j<k-l

Sk2 2 2 2 
coli1) =ok[(ek+0i) (Ok+0j] - -. j{) , i

W = Sk/(bok),(n-l)W ", x (n-i) and (3.5)

(Y1p ...,k-I and W are independent;

and

.
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Cj 0k)8 + O O), 1 _< j _ k-1;) e~Q (8 2+ 2 -~- ~ _ k- i. (3.6)

Note that aQ) > 0, 8j(e) > 1152 and pij(k) > 1 since
ek o .j for j # k. Then by Slepian's inequality, we

conclude that the smallest value of the constant c is
given by

P (CSIR I  > P(Zj < cW for 1 < j < k-l1 P* for

BE Q,

where Z. (1 < j < k-i) are defined in (3.3).

Least Favorable Configuration

Let Q =...= k > 0). For each 6 E Q,

Ok = 6[k) being fixed, both aj(k) and 8.(e) are decreas-
ing in ea and aj(9) = 0, 8j(8) = 1//2 when 0 = 0k .

Then by Slepian's inequality, we can see that

inf P8 {CSIR I } = inf P0 (CSIR 1I = P0 {CS R 1QES " Q 0  P°.

for any e E IO" Note that P {CSIR) does not depend
'U0

on

Some Properties of R

Property 1. For fixed 0 E Q., P {CSIR I is decreasing

in b for b > 0.

This is obvious from (3.4) since aj(O) > 0 and the
distributions of (Yl'''Y k-I) and W are independent

_.4 -., '. ,' ...--':"- v " .". .': v , ,' "-.,:. ., -: .", ,". -, ."v , .--- ' " -,-- " ' -, '- .,-'. -" -
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of the parameter b.

For fixed b, suppose that (O1...,ak)

(ac1 + dl,...,ack + dk), where c i > 0, a, d. > 0 and

ac. + d. > 0 for each i = 1,...,k. Also, we assume

that c > c, d > dj for j # k. Thus, e > e. for
k j k k jj #k. Then,

P {CSIR 1 }
*(3.7)

= pY0  < V gj(a)b - + /2ch.(a)W for j # k),

2 2
where gj (a) [a(ck-C)+(dk-dl])I[(ack+dk) 2+(ac+dj2] d2 2-

hj(a) = (ack+dk [(ack+dk) 2 +(ac.+d) 2

Lemma 3.1. The following three statements are
equivalent.

d d.
k j

ii) gj(a) is increasing in a for a > 0.

- iii) h (a) is increasing in a for a > 0.

From (3.7) and Lemma 3.1, we have the following results.

" Property 2. Let b be a fixed constant, then

d k d.
a) if _ > - for all j 0 k, then P {CSIR l } is- k) if c -> kc

decreasing in a; and

.'

............................................................... "~*S~*.* .. '. **~' .
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d d.
b) if - < ! for all j # k, then P {CSIR is

Ck -
- QCiR}i

increasing in a.

- The following two situations are special cases of
" Property 2.

c) When c1 = c2 -... = ck and dl,...,dk are fixed

constants, then P6 { CSIR I} is decreasing in a.

" d) When d =...=dk= 0 and cl,...,ck are fixed

constants, then P {CSIR I is a constant, which is

independent of the parameter a.

" Property 3. Monotonicity of R
Let P { w ilRI be the probability of including n. in the

selected subset when rule R is applied and e is the

." true parameter vector. Then,

Theorem 3.2. If 0. > o. then P{irR) > P{n jR1.

.- Proof: Without loss of generality, let 02 01, and
-: we will prove that P { 21RI P {71 TR 1 1. Straight-

forward computations show that

" pes{iJRll

-11 22 2

Yim- /n1e-O8 (6i+6m)- '+2c~i(Oi+Om)- W for

3 <m k

SL
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for i,j = 1,2, i # j, where cov(YimYi) -

e262+e2) , 1 < L, m k, t # m, t i,, i.1i~e m1 (  II ,

We then conclude the proof of this theorem by an
application of Slepian's inequality and by noting the
following facts:

i) (0-e M2+.2) is increasing in 0 for 0 > 0 for
each m;

i) ((2 2 ~>0frec
ii) O(02+02) is increasing in e for > 0 for eachmm; and

iii) cov(Y2m, Y2L) > cov(Ylm,Yll) for 3 < m, X _ k,

m # k and cov(Y2 1 , Ym) > cov(Yl 2 , ¥1m) for

3 < m < k.

Expected Size of Selected Subset

Note the selection rule R selects a non-empty subset,

the size of which is not fixed in advance but depends
on the outcome of the experiment. Hence, as a measure
of performance of the selection rule R1 , we can con-

sider the expected size of the selected subset, say
E,(SIR I). We have the following expression:

k
E0(SIR 1) = (I (W IR 11~i i

(3.8)k i1-1-1Il
P --{V > . J.j.6.+ b-1i je e- ,l)/22cW for

j ,# ii,

where Vi , 1 < i < k, are iid having standard normal

distribution and W is as defined in (3.3). It is often
of intcrest to identify the parameter configuration

J. o- -. . . o o , .° , . .

9... 'J..- , . ;:'''''' ,. " "",,: X ."-",-.'' " '.-.° . '---.-.-.,\.; .'. .-.-.-- ":,',...-".'.-'.-
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where the supremum of (3.8) occurs. For k = 2, let
02 = 0 and 81 = A0, 0 c A < 1. Then,

= 2 2 2~(SIRI  = (vnb- ) (1+A) +vrAc(l+A2 ) w)dFw(W)
'0

+ 70(/nb-(l-A) (1+62) -+/c(l+A 2 ) w)dFW(W),
0

where ?(-) is the standard normal distribution and
FW(.) is the distribution of random variable W.

We see that sup E0 (SIR) = 2P* and the supremum occurs
k E:2 A.

when A = 1. For k > 2, it appears difficult to obtain
such a result. We can only state that
sup E (SIR I) > sup E (SIR I) = kP*.

Remark

For the case when b is known, Tamhane (1978), proposed
a subset selection rule for the best population using
estimators of Gleser and Healy (1976). He also
provided tables for implementing the rule in the large
sample case. However, for small sample sizes, tables
for implementing Tamhane's rule are not available. It
has been pointed out by Tamhane (1978) that for certain
values of b, k, n and P*, Tamhane's rule does not exist.
Based on sample variances, Gupta and Singh (1983) also
proposed a subset selection rule for the problem of
selecting the best population. Their selection rule
and the associated probability of correct selection are
independent of the value of the common coefficient of
variation b, and hence, can be applied to the situation
when this value is unknown. They made some comparison
between Tamhane's and their rules. It is found that in
tcrms of expected size of selected subset, the perform-
ance of Gupta and Singh's rule is a little inferior to
that of Tamhane's rule. For k = 2 and large sample
size, there is not much difference between these two

~-~I o.:;
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Note that the proposed rule R1 is independent of the

1~P.

value of the common coefficient of variation b. H-ow-
ever, from (3.4), we can see that the associated
probability of a correct selection depends on b for
each fixed 0 E P. Therefore, it is interesting to
compare the performance of rule R with Gupta and

Singh's rule. Further study of this comparison is to
be carried out.

4. Indifference Zone Approach

The goal here is to derive selection rules which will
select the best population with a guaranteed probabil-
ity P*. On £(6*), the associated measure of distance
between populations vi and T. is 6(1i,8.) = ei-e j ,

which is different from the one considered by Tamhane
*(1978). Since both 0 and the common coefficient of

variation b are unknown, on Q(S*), it is impossible to
construct a single-stage selection rule which guaran-
tees the probability requirement of (2.2). In the
following, a two-stage elimination type selection rule
is proposed.

Two-Stage Elimination Type Selection Rule R2

* Stage 1: Take n0 (> 2) independent observations

Xi (j = l...,n 0) from each vi (i = l,...,k), and
n 0

compute the sample mean I = and sample
n0
00 ~

variance S = 1 X ') 2 Then determine thei n-1 jl ij ^i "

set

A =itRl > R!Xj-(2dS /n/-0 -6*)+ for j#i), (4.1)

where y = max(y,O) and d is a positive constant chosen
to satisfy (2.2).

4w
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If A contains only one element, then stop sampling and
assert that the population associated with max 1is

1. isj

the best.

If A has more than one element, then proceed to the
second stage.

Stage 2: Let SA - max Si. Determine" irA
iEA
2* N = max{nO,[ 2 (dSA/6*)2]*), where [yl* denotes the

smallest integer > y. Take N-n0 additional observations

X from each wi (i E A) if necessary. Then compute
N

the overall sample means X I . i E A) and
j=J ' ~ N

assert that the population associated with max Xi is
iEA

the best.

- Note: This selection rule is essentially of the same
type as that of Gupta and Kim (1984), even though we
have a different type of screening procedure and
different way to determine the value N. The difference
is due to the fact that in this paper, the concerned
population standard deviations are proportional to
respective population means while Gupta and Kim (1984)
considered a common unknown standard deviation.

*Probability of Correct Selection

Without loss of generality, we still assume that k is

the best population. Therefore, 0k - 0j + 6* for j 9 k.

Let B be any subset of {1,2,...,k) containing the
element k; and let E(B) be the event that subset B is
selected at the first stage. Also, let
C = (B C {1,...,k)Ik f B). Then,II

.1

,, .- .. ... . , .,,,,. ...W,,* , ,-. ** -. .* ,,% .-
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ik

U E(B) = X _ -6I)+ for j # k).(4.2)
BEC - -o

0
Also,

P4{cs32} = BjePe{CS n ECB)}
(4.3)

= I Pe{CSIE(B))Pe{E(B)}.

BECt

Here P {CSIE(B)} denotes the conditional probability of

CS given E(B).
pp

Since 0k >_ 0j + 8* for j # k, for each B E C,

P {CSIE(B)}

= .X X for j E B-{k}IE(B)} (4.4)

>P {Y. rNi.6*b 1 (e 2 +e 2 )- f
{~ k )  for j E B-{k)IE(B)},

where
Y3 /N(XjXk-(e-O}] b~2 2 -1

Y. = )(b(+e) ) N(0,1),J k k k
1< j < k-1;

cov(Yi,Y.) = pi, which is defined in (3.5) for

i # j.
Conditional on E(B), rNS* /2dS > /2dS k . Then, it

follows that

P0 CSIE(B)}

(PeYj /32ej()dW for j E B-(k}IE(B)) (4.5)

> P0{Yj < /((2Oj0)dW for I < j < k-liE(B)}

where W = Sk/(bOk) and 8j(0) is defined in (3.6).

k k.
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Let Yk /n--0[l l ) - l ))-(e 0  (b(0j+0k i }

1 < j '_k-l.

Then, Y. %)N(0,l), cov(Y (l),y1 = Pij(e' i 0 j.

Also, cov(Yi,Yll 0, 1 OP i, j _ k-1. It should be

pointed out that (Y ) and (Y1 ,...,Y(l)) are
V ... #Yk-lk-i

. identically distributed, and (YI,...,*Yk-1 and

*(Y1) ..""',Y()) are independent of W.
1 k-i

For fixed e(-0 let k _(e k ...,8k wherek [k) 1 ~ 0 '*'k'whr
*k . k and 8 k - ek-8* for j#k. Then,

i j Q ) -- P ij8 k

) B(e) > BQ k (4.6)

Note that both 0ijQk) and 0 (9k) aire decreasing in ek;

Noethtboh2 j ( kkPi ( k) _. _j, a (kk) - a 72s k -1-"

From (4.2) to (4.6) together with the facts that

e ek  .e + 6* for j # k, cov(YiY > 0,
8'4 + ([dSk - 08* _ and repeated applica-

tions of Slepian's inequality, straightforward

computations lead to the following result:

€p

* p.

'A°

i .'A
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P {CSIR 2 )

Sf /20j ( Y /2 Wj(dW for 1 <j 'k-l

7> .{Yj _ 5B(o)dW, Yl < 42_ _()dw for

1 j < k-1)dFw(w)

> f[P6 {Yj _< /20j( )dw for 1 < j < k-l}]2dFwlW)'"

71P {Y 2je )dw for 1< j - k11 dF (w)

k 2
> [P k < / )dw for 1 < j < k-l]dFW(w)"

00
f P{Yj r< ( dw for 1 < _< ]2dw

0 0

> P{Zj <1 dw for 1 <j k-l}d (w)]'.

= [P{Z. _ dW for 1 < j < k-111

where (ZI,...,Zk I are defined in (3.3), and distribu-

ted independently of W.

For given P*, we can choose the value d so that

P{Zj < dW for 1 < j < k-l = vP. (4.8)

Therefore, the probability requirement of (2.2) will be
satisfied. For some specified values of P*, k and no ,

the corresponding d value can be found in Gupta and
Sobel (1957) and Gupta, Panchapakesan and Sohn (1985).

4.'-' *.. , , , .. ..- . . -., .. . .. , ....... ..,.., . .. .- .., .-., -. ., .-, ,
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A Modified Two-Stage Selection Rule R2(*)

In practical situations, the experimenter sometimes may
have some prior knowledge about an upper bound on 0 [k]"

say 0*. This knowledge can be used to reduce the
sample size taken at the second stage.

Let *1 ) = (er,..., ) k he k] , e2 and
1 k () 2 22 -10* - o"-6" for j # k. Let p* - e* (0 + (e*-6*)

and B* = *0*2 + (*-6*12) - . Let Y#(l < i < k-i) be

standard normal random variables having cov(Y.,YV) = p*
1)3

for i # j, and W be a random variable distributed

22

X distribution with (n0-1) degrees of freedom.

Let d(8*) be chosen to satisfy

P{Y.* < d(e*) /2B*W for 1 < j < k-l} = /P. (4.9)

Then a modified two-stage elimination type selection
rule, say R2(e*), can be defined. This selection rule

R2(0*) is similar to rule R2  The only difference is

that now the value d(e*) is used instead of the value
d. We denote the corresponding N by N(8*).

Following (4.7), one can see that for each 8 E n(*,e*)
where Q(,0') = {E f(6)Ie(k] I e*}, .

P {CSIR 2 (0")1

> (P{Y< d(O*)/2*W for 1 < j _ k-1)]2 = P*.

Since 0' > and 0* ' -, it follows from Slepian's
2

inequality, (4.8) and (4.9) that d(O) 4 d, and
hence N(O*) < N. Also, if we let A(O*) denote the

A,°

** *5 * %%q**~*%~ V . ... .. ~ % * ~.**



17

subset selected at the first stage by applying rule
R2 (0 *) , that is,

-) -() /2d (*) S..."

A(0*) = {ilX-6*)for
0(4.10)

then, since d(0*) < d, from (4.1) and (4.10), we can
see that A(0*) C A ; hence, IA(B*) < JAI where JBI
denote the size of set B.

Generally speaking, the modified selection rule R2 (e*)

reduces the size of the subset selected at the first
stage and reduce the sample size needed at the second
stage.

An Example to Illustrate the Use of R2 and R2 (6*)

Suppose that a consumer has to decide on buying one lot
of bolts from among five lots that are available. The
tensile strength (in pound per square inch; psi) of the
ith (1 < i < 5) lot is normally distributed with mean
0i and standard deviation bei, where both b and ei are
positive and unknown. Suppose that 6* = 200 psi and
P* = 0.90 have been specified by the consumer. Further,

suppose that no = 16 bolts are randomly sampled from

each of the five lots and that the sample means and the
sample standard deviations are:

(x1 ,x2  ,(l x3  x4  x )=(350,380,470,600,650),

(sl S2 , s , Vs 4 , s5 )=(360,420,500,580,600).

Now VP5 = 0.9486833 s 0.95, so from Table IV (p = 0.5)
in Gupta, Panchapakesan and Sohn (1985), using interpo-
lation, it is found that d f 2.34582. Then,
A = (3, 4, 5). Therefore, we proceed to the second
stage and find that N = 100. Further additional 84
observations are taken from each of the selected lot
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*w

and the sample mean xi is computed. Finally, the

consumer selects the lot of bolts associated with the
largest sample mean among Xi 3 < i < 5, as the best.

Suppose now that the consumer, from past experience,

has some knowledge that 015e < 1000 = 8*. Therefore,

he prefers to apply the modified selection rule R2 (O*)

for his selection problem. Now,

p* = 0*2(o"2+(*-6*) 2 ) - 1 = 0.609756;

B* = 6*(0*2+(0*-6*)2) -  0.7808688.

Let d I = d(e*)/V2*. From (4.9) and Table IV (p = 0.6)

in Gupta, Panchapakesan and Sohn (1985), using interpo-
* lation, it is found that dI - 2.30289. Therefore

d(0*) 2.0853556. Note that p* F 0.609756 > 0.6. So
the value d(e*) obtained in this way will be a little
conservative since the exact value of d(9*) will be a
little less than that used here. We then find that
A(e*) = (4,51 and N(e*) = 79. Therefore the consumer
needs to take additional 63 observations from each of
4th and 5th lots to accomplish the selection process.
Note that the total sample size by applying rule
R2 (e*) is 206 while the total sample size by applying

rule R is 332. The saving of the total sample size is
2

quite significant.
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prior knowledge about an upper bound" on the unknown means, a
modification is introduced to reduce the size of the selected
subset at the first stage and also to reduce the sample size a
the second stage. An example is provided which indicates that
-the saving of total sample size is quite significant if this
prior knowledge is taken into consideration in designing the

selection rule. It is shown how to implement the above selec-
tion rules by using several existing tables.
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